The de novo centriole assembly pathway in HeLa cells

نویسندگان

  • Sabrina La Terra
  • Christopher N. English
  • Polla Hergert
  • Bruce F. McEwen
  • Greenfield Sluder
  • Alexey Khodjakov
چکیده

It has been reported that nontransformed mammalian cells become arrested during G1 in the absence of centrioles (Hinchcliffe, E., F. Miller, M. Cham, A. Khodjakov, and G. Sluder. 2001. Science. 291:1547-1550). Here, we show that removal of resident centrioles (by laser ablation or needle microsurgery) does not impede cell cycle progression in HeLa cells. HeLa cells born without centrosomes, later, assemble a variable number of centrioles de novo. Centriole assembly begins with the formation of small centrin aggregates that appear during the S phase. These, initially amorphous "precentrioles" become morphologically recognizable centrioles before mitosis. De novo-assembled centrioles mature (i.e., gain abilities to organize microtubules and replicate) in the next cell cycle. This maturation is not simply a time-dependent phenomenon, because de novo-formed centrioles do not mature if they are assembled in S phase-arrested cells. By selectively ablating only one centriole at a time, we find that the presence of a single centriole inhibits the assembly of additional centrioles, indicating that centrioles have an activity that suppresses the de novo pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation

t has been reported that nontransformed mammalian cells become arrested during G 1 in the absence of centrioles (Hinchcliffe, E., F. Miller, M. Cham, A. Khodjakov, and G. Sluder. 2001. Science . 291:1547–1550). Here, we show that removal of resident centrioles (by laser ablation or needle microsurgery) does not impede cell cycle progression in HeLa cells. HeLa cells born without centrosomes, la...

متن کامل

Kinetics and regulation of de novo centriole assembly Implications for the mechanism of centriole duplication

BACKGROUND Centriole duplication is a key step in the cell cycle whose mechanism is completely unknown. Why new centrioles always form next to preexisting ones is a fundamental question. The simplest model is that preexisting centrioles nucleate the assembly of new centrioles, and that although centrioles can in some cases form de novo without this nucleation, the de novo assembly mechanism sho...

متن کامل

Clustering of Short Read Sequences for de novo Transcriptome Assembly

Given the importance of transcriptome analysis in various biological studies and considering thevast amount of whole transcriptome sequencing data, it seems necessary to develop analgorithm to assemble transcriptome data. In this study we propose an algorithm fortranscriptome assembly in the absence of a reference genome. First, the contiguous sequencesare generated using de Bruijn graph with d...

متن کامل

Identification of a Polo-like Kinase 4-Dependent Pathway for De Novo Centriole Formation

Supernumerary centrosomes are a key cause of genomic instability in cancer cells. New centrioles can be generated by duplication with a mother centriole as a platform or, in the absence of preexisting centrioles, by formation de novo. Polo-like kinase 4 (Plk4) regulates both modes of centriole biogenesis, and Plk4 deregulation has been linked to tumor development. We show that Plx4, the Xenopus...

متن کامل

Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells

How centrosome removal or perturbations of centrosomal proteins leads to G1 arrest in untransformed mammalian cells has been a mystery. We use microsurgery and laser ablation to remove the centrosome from two types of normal human cells. First, we find that the cells assemble centrioles de novo after centrosome removal; thus, this phenomenon is not restricted to transformed cells. Second, norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 168  شماره 

صفحات  -

تاریخ انتشار 2005